From 1 - 10 / 27
  • This report provides background information about the Ginninderra controlled release Experiment 2 including a description of the environmental and weather conditions during the experiment, the groundwater levels and a brief description of all the monitoring techniques that were trialled during the experiment. Release of CO2 began 26 October 2012 at 2:25 PM and stopped 21 December 2012 at 1:30 PM. The total CO2 release rate during Experiment 2 was 218 kg/d CO2. The aim of the second Ginninderra controlled release was to artificially simulate the leakage of CO2 along a line source, to represent leakage along a fault. Multiple methods and techniques were then trialled in order to assess their abilities to: - detect that a leak was present - pinpoint the location of the leak - identify the strength of the leak - monitor how the CO2 behaves in the sub-surface - assess the effects it may have on plant health Several monitoring and assessment techniques were trialled for their effectiveness to quantify and qualify the CO2 that was release. This experiment had a focus on plant health indicators to assess the aims listed above, in order to evaluate the effectiveness of monitoring plant health and the use of geophysical methods to identify that a CO2 leak may be present. The methods are described in this report and include: - soil gas - airborne hyperspectral surveys - plant health (PhenoMobile) - soil CO2 flux - electromagnetic (EM-31) - electromagnetic (EM-38) - ground penetrating radar (GPR) This report is a reference guide to describe the Ginninderra Experiment 2 details. Only methods are described in this report with the results of the study published in conference papers and future journal articles.

  • Geoscience Australia defines a borehole as the generalized term for any narrow shaft drilled in the ground, either vertically or horizontally, and would include Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types, but does not include Costean, Trench or Pit. For the purpose of a borehole as defined by GeoSciML Borehole 3.0, the dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • Marine visual imaging has become a major assessment tool in the science, policy and public understanding of our seas and oceans. The technology to acquire and process this imagery has significantly evolved in recent years through the development of new camera platforms, camera types, lighting systems and analytical software. These advances have led to new challenges in imaging, including storage and management of `big data, manipulation of digital photos, and the extraction of biological and ecological data. The need to address these challenges, within and beyond the scientific community, is set to substantially increase in the near future, as imaging is increasingly used in the designation and evaluation of marine conservation areas, and for the assessment of environmental baselines and impact monitoring for maritime industry. We review the state of the theory, techniques and technologies associated with each of the steps of marine imaging for observation and research, and to provide an outlook on the future from this active scientific and engineering community that develops and uses it.

  • Spatially continuous information is often required for environmental planning and conservation. Spatial modelling methods are essential for generating such information from point samples. The accuracy of spatial predictions is crucial for evidence-based decision making and often affected by many factors. Spatial reference systems can alter the features of spatial data and thus are expected to affect the predictions of spatial modelling methods. However, the degree to which such systems can affect the predictions has not been examined yet. It is not clear whether such effect changes with spatial modelling methods neither. In this study, we aim to test how sensitive spatial modelling methods are to different spatial reference systems. On the basis of a review of different spatial reference systems, we select eight systems that are suitable for environmental variables for the Australian Exclusive Economic Zone. We apply two most commonly used spatial interpolation methods to a marine dataset that is projected using the eight systems. Finally we assess the accuracy of the methods using leave-one-out cross validation in terms of their predictive errors. The sensitivities of the spatial modelling methods to the eight spatial reference systems are then analyzed. The data manipulation and modelling work are implemented in ArcGIS and R. In this paper, we discuss the testing results; examine the spatial predictions visually; and discuss the implications of the findings on spatial predictions in the marine environmental sciences. The outcomes of this study can be applied to the spatial predictions of both marine and terrestrial environmental variables. ModSim 2013, Adelaide, South Australia

  • The Protocol on Environmental Protection to the Antarctic Treaty (the 'Madrid Protocol') includes provisions to protect areas of biological, scientific, historic, aesthetic or wilderness value. While these provisions have been mostly utilised to protect sites of biological or cultural significance, sites of geological or geomorphological significance may also be considered. To date, only two sites within East Antarctica (Marine Plain, Vestfold Hills and Mount Harding, Grove Mountains), have been declared as Antarctic Specially Protected Areas (ASPA) in recognition of their unique geological or geomorphological significance. Recently, however, Stornes, a peninsula in the Larsemann Hills (Prydz Bay) has been identified as a candidate due to the abundance and diversity of extremely rare granulite-facies borosilicate and phosphate minerals found there. The need for proactive intervention, protection and management of sites of intrinsic geoscientific value is becoming increasingly important. This recent example highlights the growing awareness of the intrinsic scientific value of Antarctic geological features within the AAT, including rare mineral or fossil localities. This awareness is identified within the current Australian Antarctic Science Strategic Plan and emphasises that geosciences can actively contribute to and influence the development of management plans and actively support Australia's commitments to Annex V of the Madrid Protocol. Wider recognition of the geological values achieved by invoking the provisions for area management, including creating the need to obtain the permission of a national authority to enter the area, should also mitigate casual souveniring and accidental or deliberate damage caused by ill-advised construction or other human activity.

  • The Aerial Survey Photography Records consist of more than 11,000 film negatives as well as derivative contract prints and diapositives. These records of the Australian landscape were created by Geoscience Australia and its predecessor agencies such as the Australian Surveying and Land Information Group, the Australian Survey Office and the Division of National Mapping. The records were captured during the period c.1928-1993 and have been used as the basis for the Commonwealth government's topographic map production as well as providing an opportunity to track environmental changes in the landscape over an extensive period of time. Antarctic films are also included in the collection. The entire collection was transferred to National Archives Australia in December 2010.

  • Geoscience Australia Flyer prepared for LOCATE14.

  • Presentation to be delivered at the Western Australian Marine Science Institution Symposium, Fremantle, 21 February Abstract text: Geoscience Australia, as the Australian Government's geoscience agency, has a long history of marine environment mapping and research on the North West Shelf of Australia. In recent times, several data acquisition surveys have been completed and subsequent interpretive products have been produced under Commonwealth Government programmes, including: the Offshore Energy Security Program (2006-2011); the Marine Biodiversity Hub under the Commonwealth Environmental Research Facilities (CERF) and the National Environmental Research Program (NERP), and; the National CO2 Infrastructure Plan (NCIP, 2011-15). Collaborations, such as those facilitated by CERF and NERP, and with the Australian Institute of Marine Science (AIMS), have resulted in further work in the region. Areas of investigation have included the North Perth Basin, Bonaparte Gulf and Timor Sea. Using data from these surveys and other sources, GA is continuing to develop regional-scale seabed datasets, including bathymetry, geomorphology, sediment properties, seabed disturbance and seabed hardness that are publicly available via the internet. A pilot program was started in 2010 to collate and archive environmental data generated by the offshore petroleum industry, with a focus on the North West Shelf. Geoscience Australia is currently undertaking marine surveys to provide seabed environmental information to support assessments of the CO2 storage potential of several offshore sedimentary basins under NCIP. A marine survey over the Browse Basin in May 2013, to be undertaken in collaboration with the AIMS, will acquire high-resolution bathymetry and information on seabed and shallow subsurface geology and ecology. Follow-up surveys are also proposed during 2013-2015. The Browse survey results will be publicly released as a data package integrating existing and the newly acquired seabed data, and in a report to the Department of Resources Energy and Tourism on the CO2 storage potential of selected areas of the Browse Basin.

  • The National Geochemical Survey of Australia (NGSA) project (www.ga.gov.au/ngsa), part of Geoscience Australia's Onshore Energy Security Program 2006-2011, was carried out in collaboration with all state and territory geological surveys. It delivered Australia's first national geochemical atlas, the underpinning geochemical database, and a series of reports and papers. Catchment outlet sediments (mostly similar to floodplain sediments) were sampled in 1186 catchments covering ~6.2 million km2 or ~81% of the country (on average one sample per 5200 km2). Samples were collected at two depths (0-10 cm and ~60-80 cm), each sieved to two grain size fractions (<2 mm and <75 mm) and analysed for total, aqua regia, and Mobile Metal Ion® element contents; other analyses (pH, electrical conductivity, grain size distribution, spectroscopy, etc.) were also performed. Results to date have been used to: (1) investigate first-order controls on the geochemical makeup of Australian regolith in comparison to Europe; (2) compile preliminary, multi-continental, empirical 'Global Soil' reference values; (3) produce continental-scale soil pH maps; (4) map Fe oxide mineralogy and soil colour; (5) investigate the level and distribution of bioavailable elements in Australia; (6) determine element associations by multivariate statistical methods and compare resulting patterns to independent geoscience datasets; (7) model the distribution of soil carbonate using multiple environmental covariates; (8) assess the potential of the dataset for mineral prospectivity analysis (e.g., for base metals, U, Au and REEs); (9) select salt lakes to be investigated for their potential to host potash, Li and B resources; (10) ground truth, infill and 'correct' airborne radiometric concentration data for K, U and Th; and (11) shed light on the phenomenon of disequilibrium in the radioactive decay chain of U by comparing actual to estimated U concentrations at the continental scale. The NGSA project was Australia's first national-scale geochemical survey, requiring certain strategic decisions to be taken about sampling medium, density, etc. The resulting atlas and dataset have proven useful and applicable to many end-uses, but limitations and challenges exist as in every geochemical survey.

  • This video explains the concept behind Geoscience Australia's Data Cube, a new way of organising, analysing and managing the large amounts of data collected from Earth Observation Satellites (EOS) studies over time. The Data Cube facilitates efficient data analysis and enables users to interrogate Australia's EOS data from the past and present. It is hoped that the Data Cube will become a useful tool used by remote sensing scientists and data analysts to extract information to support for informing future decision-making and policy development within Australia.